10.1. 简介¶
Horizon-Torch-Samples是基于Pytorch和Pytorch plugin的接口开发的算法工具,旨在为地平线BPU提供高效且用户友好的算法工具包。
Horizon-Torch-Samples所依赖的PyTorch是一个针对深度学习,并且使用GPU和CPU来优化的tensor library (张量库),是目前最受欢迎的深度学习框架之一。而Pytorch plugin是基于Pytorch开发的一套量化算法工具,专注于与计算平台相贴近的量化功能实现,其量化算法与地平线计算平台深度耦合,利用该工具训练得到的量化模型均可以正常编译和运行在地平线BPU上。
Horizon-Torch-Samples作为地平线开发的算法包基础框架,面向所有的算法用户开发和研究的用户,其量化训练与地平线计算平台紧密相关,包含了 浮点训练 –> QAT 训练 –> 定点转化预测 –> 模型检查编译(针对地平线 BPU) –> 上板精度仿真验证 的整套流程。同时它还可以提供包含分类,检测,分割等常见的图像任务的SOTA(state-of-the-art)深度学习模型。
10.1.1. 特性¶
基于Pytorch和horizon_plugin_pytorch。
包含从 浮点训练 到 上板精度仿真验证 的整套流程。
包含分类、检测、分割等常见图像任务的SOTA模型,且所有示例都与地平线BPU兼容。
10.1.2. 示例模型¶
Horizon-Torch-Samples目前已包含以下深度学习模型。
分类模型
MobileNet (V1 and V2)
ResNet (18 and 50)
EfficientNet
VargNet_V2
SwinTransformer
MixVarGENet
EfficieNasNet(m and s)
VargConvert
检测模型
RetinaNet
YOLOv3
FCOS
PointPillar
DETR
FCOS3D
CenterPoint
分割模型
UNet
Deeplabv3plus_Efficientnetm0
Deeplabv3plus_Efficientnetm1
Deeplabv3plus_Efficientnetm2
FastSCNN
光流模型
PWCNet
车道线检测模型
GaNet
多目标跟踪模型
Motr
双目深度估计模型
StereoNet
StereoNetPlus
Bev多任务模型
Bev_mt_gkt
Bev_mt_ipm_temporal
Bev_mt_ipm
Bev_mt_lss
Detr3d_efficientnetb3_nuscenes
Bev_cft
Keypoints Detection Model
Keypoint_efficientnetb0_carfusion
Lidar多任务模型
LidarMultiTask
轨迹预测模型
DenseTNT
以上模型中, ResNet18
、 ResNet50
、 VargConvert
、 EfficieNasNet
、 EfficientNet
、 MixVarGENet
、 VargNet_V2
、 RetinaNet
、 YOLOv3
、GaNet
、 deeplabv3plus efficientnetm0
、deeplabv3plus efficientnetm1
、 deeplabv3plus efficientnetm2
、 FastScnn
、 Bev_mt_gkt
、Bev_mt_ipm
、 Bev_mt_lss
、 Detr3d_efficientnetb3_nuscenes
和 Keypoint_efficientnetb0_carfusion
只需要做calibration量化精度就能达到目标,详细精度参考model_zoo。