11. 模型性能Benchmark¶
11.1. 说明¶
测试条件:
测试开发板:X5-DVB board。
测试核心数:单核。
性能数据获取频率设置为:5分钟时间内性能参数的平均值。
Python版本:Python3.10。
缩写说明:
C = 计算量,单位为GOPs(十亿次运算/秒)。此数据通过
hb_perf
工具获得。FPS = 每秒帧率。此数据在开发板单线程运行ai_benchmark示例包/script路径下各模型子文件夹的 fps.sh 脚本获取,包含后处理。
ITC = 推理耗时,单位为ms(毫秒)。此数据在开发板单线程运行ai_benchmark示例包/script路径下各模型子文件夹的 latency.sh 脚本获取,不含后处理。
TCPP = 后处理耗时,单位为ms(毫秒)。此数据在开发板单线程运行ai_benchmark示例包/script路径下各模型子文件夹的 latency.sh 脚本获取。
RV = 单帧读取数据量,单位为mb(兆比特)。此数据通过
hb_perf
工具获得。WV = 单帧写入数据量,单位为mb(兆比特)。此数据通过
hb_perf
工具获得。
11.2. 模型重要性能数据¶
MODEL NAME |
INPUT SIZE |
C(GOPs) |
FPS |
ITC(ms) |
TCPP(ms) |
Dataset |
---|---|---|---|---|---|---|
MobileNetv1 |
1x224x224x3 |
1.14 |
1365.00 |
1.015 |
0.051 |
ImageNet |
MobileNetv2 |
1x224x224x3 |
0.63 |
1492.78 |
0.892 |
0.068 |
ImageNet |
GoogleNet |
1x224x224x3 |
3.00 |
631.55 |
1.851 |
0.052 |
ImageNet |
Resnet18 |
1x224x224x3 |
3.65 |
449.30 |
2.523 |
0.052 |
ImageNet |
EfficientNet_Lite0 |
1x224x224x3 |
0.77 |
1014.45 |
1.272 |
0.052 |
ImageNet |
EfficientNet_Lite1 |
1x240x240x3 |
1.20 |
828.00 |
1.508 |
0.052 |
ImageNet |
EfficientNet_Lite2 |
1x260x260x3 |
1.72 |
627.00 |
1.887 |
0.052 |
ImageNet |
EfficientNet_Lite3 |
1x280x280x3 |
2.77 |
455.70 |
2.490 |
0.051 |
ImageNet |
EfficientNet_Lite4 |
1x300x300x3 |
5.11 |
285.15 |
3.804 |
0.052 |
ImageNet |
Vargconvnet |
1x224x224x3 |
9.06 |
310.87 |
3.488 |
0.052 |
ImageNet |
Efficientnasnet_m |
1x300x300x3 |
4.53 |
291.47 |
3.493 |
0.052 |
ImageNet |
Efficientnasnet_s |
1x280x280x3 |
1.44 |
777.49 |
1.559 |
0.052 |
ImageNet |
YOLOv2_Darknet19 |
1x608x608x3 |
62.94 |
38.33 |
26.448 |
1.288 |
COCO |
YOLOv3_Darknet53 |
1x416x416x3 |
65.90 |
31.28 |
32.377 |
7.582 |
COCO |
YOLOv5x_v2.0 |
1x672x672x3 |
243.91 |
10.37 |
96.864 |
29.262 |
COCO |
Ssd_mobilenetv1 |
1x300x300x3 |
2.30 |
618.90 |
1.896 |
0.916 |
VOC |
Centernet_resnet101 |
1x512x512x3 |
90.54 |
26.38 |
38.314 |
3.764 |
COCO |
YOLOv3_VargDarknet |
1x416x416x3 |
42.82 |
51.73 |
19.791 |
7.567 |
COCO |
Deeplabv3plus_efficientnetb0 |
1x1024x2048x3 |
30.78 |
35.84 |
28.170 |
0.900 |
Cityscapes |
Fastscnn_efficientnetb0 |
1x1024x2048x3 |
12.49 |
70.02 |
14.460 |
0.822 |
Cityscapes |
Deeplabv3plus_efficientnetm1 |
1x1024x2048x3 |
77.05 |
18.91 |
53.123 |
0.881 |
Cityscapes |
Deeplabv3plus_efficientnetm2 |
1x1024x2048x3 |
124.16 |
12.48 |
80.466 |
0.840 |
Cityscapes |
Resnet50 |
1x224x224x3 |
7.72 |
209.85 |
4.994 |
0.068 |
ImageNet |
VargNetV2 |
1x224x224x3 |
0.72 |
1521.44 |
1.010 |
0.068 |
ImageNet |
Swint |
1x224x224x3 |
8.98 |
44.53 |
22.725 |
0.069 |
ImageNet |
MixVarGENet |
1x224x224x3 |
2.07 |
1278.23 |
1.010 |
0.068 |
ImageNet |
Fcos_efficientnetb0 |
1x512x512x3 |
5.02 |
342.34 |
3.177 |
0.217 |
COCO |
Fcos_efficientnetb2 |
1x768x768x3 |
22.08 |
69.26 |
14.980 |
5.738 |
COCO |
Fcos_efficientnetb3 |
1x896x896x3 |
41.45 |
37.42 |
27.320 |
7.753 |
COCO |
Pointpillars_kitti_car |
1x1x150000x4 |
66.82 |
26.15 |
77.429 |
2.296 |
Kitti3d |
RetinaNet_vargnetv2_fpn |
1x1024x1024x3 |
301.27 |
9.83 |
102.106 |
4.858 |
COCO |
Yolov3_mobilenetv1 |
1x416x416x3 |
20.58 |
95.67 |
10.878 |
1.275 |
VOC |
Ganet_mixvargenet |
1x320x800x3 |
10.74 |
290.82 |
3.687 |
0.795 |
CuLane |
DETR_resnet50 |
1x800x1333x3 |
202.99 |
7.60 |
131.894 |
1.391 |
MS COCO |
DETR_efficientnetb3 |
1x800x1333x3 |
67.31 |
10.69 |
393.779 |
1.399 |
MS COCO |
FCOS3D_efficientnetb0 |
1x512x896x3 |
19.94 |
597.53 |
3.921 |
8.714 |
nuscenes |
Centerpoint_pointpillar |
300000x5 |
127.73 |
102.36 |
24.822 |
52.530 |
nuscenes |
Keypoint_efficientnetb0 |
1x128x128x3 |
0.45 |
1345.10 |
0.968 |
0.296 |
carfusion |
Unet_mobilenetv1 |
1x1024x2048x3 |
7.36 |
175.54 |
5.943 |
0.474 |
Cityscapes |
Pwcnet_pwcnetneck |
1x384x512x6 |
81.71 |
24.32 |
41.366 |
0.244 |
flyingchairs |
Motr_efficientnetb3 |
image: 1x800x1422x3 track_query: 1x2x128x156 ref_points: 1x2x128x4 mask_query: 1x1x256x1 |
64.43 |
12.87 |
76.466 |
21.386 |
Mot17 |
Bev_lss_efficientnetb0_multitask |
image: 6x256x704x3 points(0&1): 10x128x128x2 |
2.41 |
31.27 |
32.997 |
14.508 |
nuscenes |
Bev_gkt_mixvargenet_multitask |
image: 6x512x960x3 points(0-8): 6x64x64x2 |
34.49 |
10.76 |
94.288 |
14.636 |
nuscenes |
Bev_ipm_efficientnetb0_multitask |
image: 6x512x960x3 points: 6x128x128x2 |
8.83 |
25.15 |
40.900 |
14.543 |
nuscenes |
Bev_ipm_4d_efficientnetb0_multitask |
image: 6x512x960x3 points: 6x128x128x2 prev_feat: 1x128x128x64 prev_point: 1x128x128x2 |
8.93 |
23.12 |
45.353 |
14.780 |
nuscenes |
Detr3d_efficientnetb3_nuscenes |
coords(0-3): 6x4x256x2 image: 6x512x1408x3 masks: 1x4x256x24 |
37.55 |
4.87 |
206.104 |
2.009 |
nuscenes |
Centerpoint_mixvargnet_multitask |
300000x5 |
51.45 |
104.42 |
23.771 |
50.498 |
nuscenes |
Stereonetplus_mixvargenet |
2x544x960x3 |
24.29 |
253.98 |
6.477 |
15.395 |
SceneFlow |
Densetnt_vectornet |
goals_2d: 30x1x2048x2 goals_2d_mask: 30x1x2048x1 instance_mask: 30x1x96x1 lane_feat: 30x9x64x11 traj_feat: 30x19x32x9 |
0.42 |
86.81 |
26.482 |
10.476 |
Argoverse 1 |
11.3. 模型全部性能数据¶
11.3.1. MobileNetv1¶
INPUT SIZE: 1x224x224x3
C(GOPs): 1.14
FPS: 1365.00
ITC(ms): 1.015
TCPP(ms): 0.051
RV(mb): 3.89
WV(mb): 0.02
Dataset: ImageNet
11.3.2. MobileNetv2¶
INPUT SIZE: 1x224x224x3
C(GOPs): 0.63
FPS: 1492.78
ITC(ms): 0.892
TCPP(ms): 0.068
RV(mb): 3.03
WV(mb): 0.12
Dataset: ImageNet
11.3.3. GoogleNet¶
INPUT SIZE: 1x224x224x3
C(GOPs): 3.00
FPS: 631.55
ITC(ms): 1.851
TCPP(ms): 0.052
RV(mb): 6.39
WV(mb): 0.02
Dataset: ImageNet
LINKS: https://github.com/HorizonRobotics-Platform/ModelZoo/tree/master/GoogleNet
11.3.4. Resnet18¶
INPUT SIZE: 1x224x224x3
C(GOPs): 3.65
FPS: 449.30
ITC(ms): 2.523
TCPP(ms): 0.052
RV(mb): 10.74
WV(mb): 0.31
Dataset: ImageNet
LINKS: https://github.com/HolmesShuan/ResNet-18-Caffemodel-on-ImageNet
11.3.5. EfficientNet_Lite0¶
INPUT SIZE: 1x224x224x3
C(GOPs): 0.77
FPS: 1014.45
ITC(ms): 1.272
TCPP(ms): 0.052
RV(mb): 5.11
WV(mb): 0.05
Dataset: ImageNet
LINKS: https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet/lite
11.3.6. EfficientNet_Lite1¶
INPUT SIZE: 1x240x240x3
C(GOPs): 1.20
FPS: 828.00
ITC(ms): 1.508
TCPP(ms): 0.052
RV(mb): 5.92
WV(mb): 0.10
Dataset: ImageNet
LINKS: https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet/lite
11.3.7. EfficientNet_Lite2¶
INPUT SIZE: 1x260x260x3
C(GOPs): 1.72
FPS: 627.00
ITC(ms): 1.887
TCPP(ms): 0.052
RV(mb): 6.69
WV(mb): 0.08
Dataset: ImageNet
LINKS: https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet/lite
11.3.8. EfficientNet_Lite3¶
INPUT SIZE: 1x280x280x3
C(GOPs): 2.77
FPS: 455.70
ITC(ms): 2.490
TCPP(ms): 0.051
RV(mb): 9.29
WV(mb): 0.32
Dataset: ImageNet
LINKS: https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet/lite
11.3.9. EfficientNet_Lite4¶
INPUT SIZE: 1x300x300x3
C(GOPs): 5.11
FPS: 285.15
ITC(ms): 3.804
TCPP(ms): 0.052
RV(mb): 14.20
WV(mb): 0.34
Dataset: ImageNet
LINKS: https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet/lite
11.3.10. Vargconvnet¶
INPUT SIZE: 1x224x224x3
C(GOPs): 9.06
FPS: 310.87
ITC(ms): 3.488
TCPP(ms): 0.052
RV(mb): 11.10
WV(mb): 2.08
Dataset: ImageNet
LINKS: https://github.com/HorizonRobotics-Platform/ModelZoo/tree/master/VargConvNet
11.3.11. Efficientnasnet_m¶
INPUT SIZE: 1x300x300x3
C(GOPs): 4.53
FPS: 291.47
ITC(ms): 3.493
TCPP(ms): 0.052
RV(mb): 13.90
WV(mb): 0.73
Dataset: ImageNet
LINKS: https://github.com/HorizonRobotics-Platform/ModelZoo/tree/master/EfficientnasNet
11.3.12. Efficientnasnet_s¶
INPUT SIZE: 1x280x280x3
C(GOPs): 1.44
FPS: 777.49
ITC(ms): 1.559
TCPP(ms): 0.052
RV(mb): 5.23
WV(mb): 0.09
Dataset: ImageNet
LINKS: https://github.com/HorizonRobotics-Platform/ModelZoo/tree/master/EfficientnasNet
11.3.13. YOLOv2_Darknet19¶
INPUT SIZE: 1x608x608x3
C(GOPs): 62.94
FPS: 38.33
ITC(ms): 26.448
TCPP(ms): 1.288
RV(mb): 52.00
WV(mb): 7.31
Dataset: COCO
11.3.14. YOLOv3_Darknet53¶
INPUT SIZE: 1x416x416x3
C(GOPs): 65.90
FPS: 31.28
ITC(ms): 32.277
TCPP(ms): 7.582
RV(mb): 82.60
WV(mb): 28.00
Dataset: COCO
11.3.15. YOLOv5x_v2.0¶
INPUT SIZE: 1x672x672x3
C(GOPs): 243.91
FPS: 10.37
ITC(ms): 96.864
TCPP(ms): 29.262
RV(mb): 205.80
WV(mb): 114.00
Dataset: COCO
LINKS: https://github.com/ultralytics/yolov5/releases/tag/v2.0
11.3.16. Ssd_mobilenetv1¶
INPUT SIZE: 1x300x300x3
C(GOPs): 2.30
FPS: 618.90
ITC(ms): 1.896
TCPP(ms): 0.916
RV(mb): 6.41
WV(mb): 0.64
Dataset: VOC
11.3.17. Centernet_resnet101¶
INPUT SIZE: 1x512x512x3
C(GOPs): 90.54
FPS: 26.38
ITC(ms): 38.314
TCPP(ms): 3.764
RV(mb): 91.10
WV(mb): 53.70
Dataset: COCO
LINKS: https://github.com/HorizonRobotics-Platform/ModelZoo/tree/master/Centernet
11.3.18. YOLOv3_VargDarknet¶
INPUT SIZE: 1x416x416x3
C(GOPs): 42.82
FPS: 51.73
ITC(ms): 19.791
TCPP(ms): 7.567
RV(mb): 56.60
WV(mb): 18.60
Dataset: COCO
LINKS: https://github.com/HorizonRobotics-Platform/ModelZoo/tree/master/Yolov3_VargDarknet
11.3.19. Deeplabv3plus_efficientnetb0¶
INPUT SIZE: 1x1024x2048x3
C(GOPs): 30.78
FPS: 35.84
ITC(ms): 28.170
TCPP(ms): 0.900
RV(mb): 43.50
WV(mb): 31.50
Dataset: Cityscapes
LINKS: https://github.com/HorizonRobotics-Platform/ModelZoo/tree/master/DeeplabV3Plus
11.3.20. Fastscnn_efficientnetb0¶
INPUT SIZE: 1x1024x2048x3
C(GOPs): 12.49
FPS: 70.02
ITC(ms): 14.460
TCPP(ms): 0.822
RV(mb): 21.40
WV(mb): 15.70
Dataset: Cityscapes
LINKS: https://github.com/HorizonRobotics-Platform/ModelZoo/tree/master/FastSCNN
11.3.21. Deeplabv3plus_efficientnetm1¶
INPUT SIZE: 1x1024x2048x3
C(GOPs): 77.05
FPS: 18.91
ITC(ms): 53.123
TCPP(ms): 0.881
RV(mb): 89.50
WV(mb): 65.10
Dataset: Cityscapes
LINKS: https://github.com/HorizonRobotics-Platform/ModelZoo/tree/master/DeeplabV3Plus
11.3.22. Deeplabv3plus_efficientnetm2¶
INPUT SIZE: 1x1024x2048x3
C(GOPs): 124.16
FPS: 12.48
ITC(ms): 80.466
TCPP(ms): 0.840
RV(mb): 126.90
WV(mb): 98.70
Dataset: Cityscapes
LINKS: https://github.com/HorizonRobotics-Platform/ModelZoo/tree/master/DeeplabV3Plus
11.3.23. Resnet50¶
INPUT SIZE: 1x224x224x3
C(GOPs): 7.72
FPS: 209.85
ITC(ms): 4.994
TCPP(ms): 0.068
RV(mb): 25.30
WV(mb): 1.77
Dataset: ImageNet
11.3.24. VargNetV2¶
INPUT SIZE: 1x224x224x3
C(GOPs): 0.72
FPS: 1521.44
ITC(ms): 1.010
TCPP(ms): 0.068
RV(mb): 3.66
WV(mb): 0.02
Dataset: ImageNet
11.3.25. Swint¶
INPUT SIZE: 1x224x224x3
C(GOPs): 8.98
FPS: 44.53
ITC(ms): 22.725
TCPP(ms): 0.069
RV(mb): 46.90
WV(mb): 11.00
Dataset: ImageNet
11.3.26. MixVarGENet¶
INPUT SIZE: 1x224x224x3
C(GOPs): 2.07
FPS: 1278.23
ITC(ms): 1.010
TCPP(ms): 0.068
RV(mb): 2.37
WV(mb): 0.12
Dataset: ImageNet
11.3.27. Fcos_efficientnetb0¶
INPUT SIZE: 1x512x512x3
C(GOPs): 5.02
FPS: 342.34
ITC(ms): 3.177
TCPP(ms): 0.217
RV(mb): 5.85
WV(mb): 1.28
Dataset: COCO
11.3.28. Fcos_efficientnetb2¶
INPUT SIZE: 1x768x768x3
C(GOPs): 22.08
FPS: 69.26
ITC(ms): 14.980
TCPP(ms): 5.738
RV(mb): 31.80
WV(mb): 22.60
Dataset: COCO
LINKS: https://github.com/HorizonRobotics-Platform/ModelZoo/tree/master/PreQQAT
11.3.29. Fcos_efficientnetb3¶
INPUT SIZE: 1x896x896x3
C(GOPs): 41.45
FPS: 37.42
ITC(ms): 27.320
TCPP(ms): 7.753
RV(mb): 60.00
WV(mb): 46.10
Dataset: COCO
LINKS: https://github.com/HorizonRobotics-Platform/ModelZoo/tree/master/PreQQAT
11.3.30. Pointpillars_kitti_car¶
INPUT SIZE: 1x1x150000x4
C(GOPs): 66.82
FPS: 26.15
ITC(ms): 77.429
TCPP(ms): 2.296
RV(mb): 72.90
WV(mb): 40.00
Dataset: Kitti3d
11.3.31. RetinaNet_vargnetv2_fpn¶
INPUT SIZE: 1x1024x1024x3
C(GOPs): 301.27
FPS: 9.83
ITC(ms): 102.106
TCPP(ms): 4.858
RV(mb): 145.00
WV(mb): 87.30
Dataset: COCO
11.3.32. Yolov3_mobilenetv1¶
INPUT SIZE: 1x416x416x3
C(GOPs): 20.58
FPS: 95.67
ITC(ms): 10.878
TCPP(ms): 1.275
RV(mb): 29.30
WV(mb): 4.82
Dataset: VOC
11.3.33. Ganet_mixvargenet¶
INPUT SIZE: 1x320x800x3
C(GOPs): 10.74
FPS: 290.82
ITC(ms): 3.687
TCPP(ms): 0.795
RV(mb): 5.23
WV(mb): 3.71
Dataset: CuLane
11.3.34. DETR_resnet50¶
INPUT SIZE: 1x800x1333x3
C(GOPs): 202.99
FPS: 7.60
ITC(ms): 131.894
TCPP(ms): 1.391
RV(mb): 384.00
WV(mb): 264.00
Dataset: MS COCO
11.3.35. DETR_efficientnetb3¶
INPUT SIZE: 1x800x1333x3
C(GOPs): 67.31
FPS: 10.69
ITC(ms): 93.779
TCPP(ms): 1.399
RV(mb): 250.00
WV(mb): 187.00
Dataset: MS COCO
11.3.36. FCOS3D_efficientnetb0¶
INPUT SIZE: 1x512x896x3
C(GOPs): 19.94
FPS: 597.53
ITC(ms): 3.921
TCPP(ms): 8.714
RV(mb): 11.55
WV(mb): 5.10
Dataset: nuscenes
11.3.37. Centerpoint_pointpillar¶
INPUT SIZE: 300000x5
C(GOPs): 127.73
FPS: 102.36
ITC(ms): 24.822
TCPP(ms): 52.530
RV(mb): 39.37
WV(mb): 19.04
Dataset: nuscenes
11.3.38. Keypoint_efficientnetb0¶
INPUT SIZE: 1x128x128x3
C(GOPs): 0.45
FPS: 1345.10
ITC(ms): 0.968
TCPP(ms): 0.296
RV(mb): 4.38
WV(mb): 0.01
Dataset: carfusion
11.3.39. Unet_mobilenetv1¶
INPUT SIZE: 1x1024x2048x3
C(GOPs): 7.36
FPS: 175.54
ITC(ms): 5.943
TCPP(ms): 0.474
RV(mb): 19.60
WV(mb): 14.70
Dataset: Cityscapes
11.3.40. Pwcnet_pwcnetneck¶
INPUT SIZE: 1x384x512x6
C(GOPs): 81.71
FPS: 24.32
ITC(ms): 41.366
TCPP(ms): 0.244
RV(mb): 66.60
WV(mb): 44.90
Dataset: flyingchairs
11.3.41. Motr_efficientnetb3¶
INPUT SIZE: image: 1x800x1422x3 track_query: 1x2x128x156 ref_points: 1x2x128x4 mask_query: 1x1x256x1
C(GOPs): 64.43
FPS: 12.87
ITC(ms): 76.466
TCPP(ms): 21.386
RV(mb): 157.00
WV(mb): 103.00
Dataset: Mot17
11.3.42. Bev_lss_efficientnetb0_multitask¶
INPUT SIZE: image: 6x256x704x3 points(0&1): 10x128x128x2
C(GOPs): 2.41
FPS: 31.27
ITC(ms): 32.997
TCPP(ms): 14.508
RV(mb): 6.03
WV(mb): 4.28
Dataset: nuscenes
11.3.43. Bev_gkt_mixvargenet_multitask¶
INPUT SIZE: image: 6x512x960x3 points(0-8): 6x64x64x2
C(GOPs): 34.49
FPS: 10.76
ITC(ms): 94.288
TCPP(ms): 14.636
RV(mb): 22.70
WV(mb): 12.50
Dataset: nuscenes
11.3.44. Bev_ipm_efficientnetb0_multitask¶
INPUT SIZE: image: 6x512x960x3 points: 6x128x128x2
C(GOPs): 8.83
FPS: 25.15
ITC(ms): 40.900
TCPP(ms): 14.543
RV(mb): 8.33
WV(mb): 6.45
Dataset: nuscenes
11.3.45. Bev_ipm_4d_efficientnetb0_multitask¶
INPUT SIZE: image: 6x512x960x3 points: 6x128x128x2 prev_feat: 1x128x128x64 prev_point: 1x128x128x2
C(GOPs): 8.93
FPS: 23.12
ITC(ms): 45.353
TCPP(ms): 14.780
RV(mb): 9.81
WV(mb): 7.70
Dataset: nuscenes
11.3.46. Detr3d_efficientnetb3_nuscenes¶
INPUT SIZE: coords(0-3): 6x4x256x2 image: 6x512x1408x3 masks: 1x4x256x24
C(GOPs): 37.55
FPS: 4.87
ITC(ms): 206.104
TCPP(ms): 2.009
RV(mb): 103.00
WV(mb): 77.20
Dataset: nuscenes
11.3.47. Centerpoint_mixvargnet_multitask¶
INPUT SIZE: 300000x5
C(GOPs): 51.45
FPS: 104.42
ITC(ms): 23.771
TCPP(ms): 50.498
RV(mb): 33.84
WV(mb): 14.45
Dataset: nuscenes
11.3.48. Stereonetplus_mixvargenet¶
INPUT SIZE: 2x544x960x3
C(GOPs): 24.29
FPS: 253.98
ITC(ms): 6.477
TCPP(ms): 15.395
RV(mb): 15.40
WV(mb): 10.90
Dataset: SceneFlow
11.3.49. Densetnt_vectornet¶
INPUT SIZE: goals_2d: 30x1x2048x2 goals_2d_mask: 30x1x2048x1 instance_mask: 30x1x96x1 lane_feat: 30x9x64x11 traj_feat: 30x19x32x9
C(GOPs): 0.42
FPS: 86.81
ITC(ms): 26.482
TCPP(ms): 10.476
RV(mb): 3.29
WV(mb): 2.92
Dataset: Argoverse 1