6.1.6.2. ModelZoo

6.1.6.2.1. Classification

HAT:

network float qat quantization dataset
MobileNetV1 74.10 73.69 73.67 ImageNet
MobileNetV2 72.64 72.13 72.09 ImageNet
ResNet 18 72.04 71.50 71.49 ImageNet
ResNet 50 77.37 76.65 76.67 ImageNet
VargNetV2 73.94 73.34 73.31 ImageNet
EfficientNet-B0 74.32 74.05 73.91 ImageNet
SwinTransformer 79.33 78.69 78.67 ImageNet

Torchvision(浮点模型来自社区):

network float qat quantization dataset
ResNet 18 69.76 69.71 69.73 ImageNet
ResNet 50 76.13 76.07 76.06 ImageNet
MobileNetV2.py 71.88 71.27 71.27 ImageNet

6.1.6.2.2. Detection

RetinaNet

network backbone float qat quantization dataset
Retinanet-vargnetv2 vargnetv2 31.53 31.52 31.58 MS COCO

YOLOv3

network backbone float qat quantization dataset
YOLOv3-MobileNetv1 mobilenetv1 76.64 76.40 76.12 VOC
YOLOv3-VarGDarknet VarGDarknet 33.9 33.6 33.6 COCO

FCOS

network backbone float qat quantization dataset
FCOS-efficientnet efficientnetb0 36.26 35.01 35.01 MS COCO
FCOS-efficientnet efficientnetb2 45.35 44.97 44.97 MS COCO
FCOS-efficientnet efficientnetb3 48.02 47.72 47.69 MS COCO

6.1.6.2.3. Segmentation

UNet

network backbone model MeanIoU MeanAcc dataset
UNet MobileNetV1 float 68.02 76.84 Cityscapes
UNet MobileNetV1 qat 67.56 76.09 Cityscapes
UNet MobileNetV1 quantization 67.52 76.00 Cityscapes

6.1.6.2.4. OpticalFlow

PwcNet

network backbone float qat quantization dataset
PwcNet-lg PwcNet 1.4114 1.4003 1.4138 FlyingChairs

6.1.6.2.5. Lidar

PointPillars

network backbone float qat quantization dataset
PointPillars SequentialBottleNeck 77.4475 76.8201 76.7314 KITTI

.. note::

PointPillars 的指标是 `Box3d Moderate` 这项。