模型精度验证及调优

0 精度验证推荐流程

流程	验证目的	验证途径	参考代码/其他说明
1 1 1 1 1 1 5 5 地平台	确保导出的浮点 onnx的有效性	测试浮点onnx模型的单张 结果,应与训练后的模型推 理结果完全一致	请参考后文: 1.1 验证onnx模型推理结果正确性
2 (1) 活 AT55 地平村 (1) 活 AT55 地平村	确保yaml配置文件 以及前后处理代码 的正确性	测试original_float.onnx模 型的单张结果,应与浮点 onnx推理结果完全一致 (nv12格式除外,由于 nv12数据本身有损,可能 会引入少许差异)	请参考后文: 1.2 yaml配置文件与前处理代码详解
3	确保图优化阶段未 引入精度误差	测试optimize_float.onnx 模型的单张结果,应与 original_float.onnx推理结 果完全一致	推理代码同上(若结果不一致,请先尝试更新OE开 发环境至最新版本,若仍然有问题,请至地平线开发 者社区工具链板块提问,并提供原始浮点onnx、配 置文件、测试数据)
			图图语 4755 地平48 图图语 4755 地平48
4 .755 m F H	验证量化精度是否 满足预期	测试quantized.onnx的精 度指标	建议可直接复用浮点模型评测代码: 1. 将模型加载/推理部分的代码改为加载/推理onnx 模型

			 dataloader的batchsize改为与onnx shape相对应 预处理代码做对应修改(参照前文建议)
面晋洁 4755 地平线			若精度不满足预期,则可直接进入精度调优环节(可 参考后文 1.4 精度调优建议)
5 10日第4755 地平45	确保模型编译过程 无误且板端推理代 码正确	使用hb_model_verifier工 具验证quantized.onnx 和.bin的一致性,模型输出 应至少满足小数点后2-3位 对齐	hb_model_verifier工具(详细介绍可参考)的使用 方式: hb_model_verifier -q quantized.onnx -b xxx.bin -a board_ip 目前该工具暂只支持比对单输入模型
			J5从OE1.1.40以及XJ3从OE2.5.2开始提供了 hb_verifier工具,可支持多输入模型一致性校验, 可参考后文1.3节相关介绍
			此外,可在板端使用hrt_model_exec infer工具推理 得到.bin模型原始输出与quantized.onnx做对比,同 样可排除工程代码有误带来的影响。
			(若quantized.onnx与.bin模型一致性校验失败,请 请先尝试更新OE开发环境至最新版本,若仍然有问 题,请至地平线开发者社区工具链板块提问,并提供 原始浮点onnx、配置文件、测试数据)

1参考代码及注意事项详解

1.1 验证onnx模型推理结果正确性

我们更推荐使用HB_ONNXRuntime而不是公版onnxruntime的原因在于公版onnxruntime对于部分 算子的实现与原始训练框架有差异,进而有可能会导致模型推理结果不一致。

1. 验证原始浮点onnx模型的正确性

特指从DL框架导出的onnx模型

```
Python
   from horizon_tc_ui import HB_ONNXRuntime
 1
 2
    import numpy as np
    import cv2
 3
 4
   def preprocess(input_name):
 5
        # BGR->RGB、Resize、CenterCrop・・・
 6
        # HWC->CHW
 7
        # normalization
 8
 9
        return data
10
    def main():
11
        # 加载模型文件
12
        sess = HB_ONNXRuntime(model_file=MODEL_PATH)
13
        # 获取输入&输出节点名称
14
        input_names = [input.name for input in sess.get_inputs()]
15
        output_names = [output.name for output in sess.get_outputs()]
16
        # 准备模型输入数据
17
        feed_dict = dict()
18
        for input_name in input_names:
19
            feed_dict[input_name] = preprocess(input_name)
20
21
        # 原始浮点onnx,数据dtype=float32
22
        outputs = sess.run_feature(output_names, feed_dict, input_offset=0)
23
24
        # 后处理
25
        postprocess(outputs)
26
27
28
    if __name__ == '__main__':
29
        main()
```

2. 验证转换工具产出物的正确性

特指original_float.onnx、optimize_float.onnx、quantized.onnx

Pyth	on				
1	fro	n horizon_tc_ui import HB_ONNX	Runtime		
2	impo	ort numpy as np			
3	impo	ort cv2			
4	-				
5	def	<pre>preprocess(input_name):</pre>			
6		# BGR->RGB、Resize、CenterCro	D • • •		
7		# HWC->CHW(通过onnx模型输入节点	点的具体shape来判断	是否需要做layout转换)	
8		<pre># input_type_train->input_typ</pre>	e_rt*(主要是nv12)	模型,需要将数据处理至yuv	444这个
	中间	类型,关于中间类型的解读请参考后文	【1.2.1节)	康晋洁 4755 地平线	
9		# normalization (若已通过yaml3	文件将norm操作放入了	了模型中,则不要在预处理中做	故重复操
	(F)	推销活 4755 地平33			
10		#-128(图像输入模型,仅在使用hb	session.run接口时	需要自行在预处理完成-128,	其他接
	口通	_ 过input offset控制即可)			
11		return data			
12					
13	def	<pre>main():</pre>			
14		# 加载模型文件			
15		<pre>sess = HB ONNXRuntime(model f</pre>	ile=MODEL PATH)		
16		# 获取输入&输出节点名称	康晋洁 4755 地平线		
17		input names = [input.name for	input in sess.ge	et inputs()]	
18		output names = [output.name f	or output in sess	s.get outputs()]	
19		# 准备模型输入数据			
20		feed dict = $dict()$			
21		for input name in input names	•		
22		feed dict[input name] = r	reprocess(input r	name)	
23		#图像输入的模型(RGB/BGR/NV12/)	/UV444/GRAY),数排	₹dtvpe= uint8	
24		outputs = sess.run(output nam	es. feed dict. in	nput offset=128)	
25		# featuremap模型,数据dtvpe=fl	oat32	.p ,	
26		outputs = sess.run feature(ou	tput names, feed	dict. input offset=0)	
27		# 混合多输入(即同时包含feature	nap和图像输入)模型		
28		outputs = sess.hb session.run	(output names, fe	eed dict) #-128的操作票	要在预
	办理	时完成	(
29)C'±	# 后处理			
30		postprocess(outputs)			
31		重要落 4755 地子运			
32	if	name == ' main ':			
33	-	main()			
00					

1.2 yaml配置文件与前处理代码详解

模型转换完成浮点模型到地平线混合异构模型的转换。为了使得这个异构模型能快速高效地在嵌入 式端运行,模型转换重点在解决 **输入数据处理** 和 **模型优化编译** 两个问题。本节重点解析在**输入数** 据处理方面的内部逻辑,便于大家理解预处理节点与模型前处理的配合关系。

1.2.1 预处理节点解析

因为地平线的边缘AI计算平台会为某些特定类型的输入通路提供硬件级的支撑方案,但是这些方案 的输出不一定符合模型输入的要求。例如视频通路方面就有视频处理子系统,为采集提供图像裁 剪、缩放和其他图像质量优化功能,这些子系统的输出往往是yuv420格式图像,而我们的算法模型 通常是基于bgr/rgb等一般常用图像格式训练得到的。为减少用户板端部署时的工作量,我们将几种 常见的图像格式转换以及常用的图像标准化操作固化进了模型当中,其表现为模型input节点之后插 入了预处理节点HzPreprocess(您可以使用开源工具 Netron 观察转换过程中的中间产物)。

由于HzPreprocess的存在,会使得转换后的模型其预处理操作可能会和原始模型有所不同,因此我 们先来详细了解一下**预处理节点**的插入逻辑。

在mapper工具完成对caffe/onnx模型的转换时,首先会将caffe模型解析为onnx格式,并根据yaml 配置文件中的配置参数(input_type_rt、input_type_train以及norm_type)决定是否为模型加入 HzPreprocess节点,预处理节点会出现在转换过程产生的所有产物中。

理想状态下,这个HzPreprocess节点应该完成 input_type_rt 到 input_type_train 的完整转换,实际情况是整个type转换过程会配合地平线AI芯片硬件完成,ONNX模型里面并没有包含硬件转换的部分。因此**ONNX的真实输入类型**会使用一种**中间类型**,这种中间类型就是硬件对 input_type_rt 的处理结果类型,数据layout(NCHW/NHWC)会保持和原始浮点模型的输入 layout一致。每种 input_type_rt 都有特定的对应中间类型,如下表:

普洁 47	A	B ^{#18,4755,48}	С	順音 ^活 D	E	顾晋 ^{洁 4155 和} F
1	nv12	yuv444	rgb	bgr	gray	featuremap
2	yuv444_128	yuv444_128	RGB_128	BGR_128	GRAY_128	featuremap

表格中第一行是 input_type_rt 指定的数据类型,第二行是特定 input_type_rt 对应的中间类型,这个中间类型就是模型转换中间产物三个onnx模型的输入类型。每个类型解释如下:

- yuv444_128/RGB_128/BGR_128/GRAY_128为对应 input_type_rt 减去128的结果。
- featuremap 是一个四维张量数据(J5支持非四维),每个数值采用float32表示。

为避免误用,并不是所有的 input_type_rt 和 input_type_train 的组合都可以支持。依据 实际生成经验,目前开放的组合如下:

語語人で	A	₩ B ⁸ 4755 28 4	С	加留活 4755 B	E	康晋洁 4755 ³⁸ F	G
1		nv12	yuv444	rgb	bgr	gray	featurema
2	yuv444	Y	Υ	Ν	N	Ν	N
3	rgb	Υ	γ	Y	Y	N 18 4755 18 77 18	Ν
4	bgr	Y	γ	Y	Y	Ν	N
5	gray	Ν	N	Ν	N	Y	N
6	featuremap	N (155 地平线	Ν	N	Ν	N	Υ

此外,如果yaml文件中的norm_type参数配置为data_mean、data_scale、 data_mean_and_scale,则预处理节点中还将包含norm操作。

请注意: yaml文件中的mean和scale参数与训练时的mean、std需要进行换算。

HzPreprocess节点中的计算公式为: $norm_data = (data - mean) * scale$, 以yolov3为例, 其训练时的预处理代码为:

```
def base_transform(image, size, mean, std):
    x = cv2.resize(image, (size, size)).astype(np.float32)
    x /= 255.
    x -= mean
    x /= std
    return x
```

```
class BaseTransform:
    def __init__(self, size, mean=(0.406, 0.456, 0.485), std=(0.225, 0.224, 0.229)):
        self.size = size
        self.mean = np.array(mean, dtype=np.float32)
        self.std = np.array(std, dtype=np.float32)
```

则计算公式为: $norm_data = (\frac{data}{255} - mean) * \frac{1}{std}$, 改写为HzPreprocess节点的计算方式: $norm_data = (\frac{data}{255} - mean) * \frac{1}{std} = (data - 255mean) * \frac{1}{255std}$ 则: $mean_yaml = 255mean$ 、 $scale_yaml = \frac{1}{255std}$

1.2.2 预处理节点与前处理代码

由于HzPreprocess节点的存在,使得转换生成的模型其前处理会与原始模型有所差异。总的来说, 有两点需要注意:

推理转换的中间模型(original_float_model.onnx / optimized_float_model.onnx / quantized_model.onnx),需要在预处理时将输入数据处理至 input_type_rt 的中间类型

(-128的操作请通过配置onnx模型推理API的 input_offset 参数实现,该参数的应用可参考 发布包中任意转换示例或前文1.1 验证浮点onnx模型正确性);

• 注意不要与HzPreprocess做重复的norm操作。

各阶段模型预处理示例如下图所示:

校准数据只需处理到input_type_train即可,同时也要注意不要做重复的norm操作。

1.3 python端与板端一致性校验

1.3.1 hb_model_verifier工具介绍

我们已经对该工具进行了升级,升级后的新工具为 hb_verifier 工具(J5 OE1.1.40/XJ3 OE2.5.2及以上版本可支持),我们推荐您优先使用新版工具,当前工具会在之后的版本中 逐渐弃用。

hb_model_verifier 工具是用于对指定的定点onnx模型和bin模型进行结果验证的工具。该工具会使用指定图片(若未指定图片,则工具会用默认图片进行推理,featuremap模型会使用随机生成的tensor数据),进行定点模型推理,bin模型板端和x86端模拟器上的推理,并对其三方的结果进行两两比较,给出是否通过的结论。

bin模型在板端的推理需确保给定ip可以ping通且板端已经安装 hrt_tools,若无则可以使用OE包中 ddk/package/board 下的 install.sh 脚本进行安装; bin模型在x86端的推理需确保

host端已经安装 hrt_tools,若无则可以使用OE包中 ddk/package/host 下的

install.sh 脚本进行安装。

1.3.1.1 工具简介

1. 参数说明

Pytho	on		
1	hb_model_verifier -q	\${quanti_model}	康晋洁 4755 地平线
2	-b	\${ bin_model} \	
3	-a	<pre>\${board_ip} \</pre>	
4	-i	<pre>\${input_img} \</pre>	
5	b-	\${digits}	

--quanti_model, -q

定点模型名称。

--bin_model, -b

bin模型名称。

--arm-board-ip, -a

上板测试使用的arm board ip地址。

--input-img, -i

推理测试时使用的图片。若不指定则会使用默认图片或随机tensor。对于二进制形式的图片文件需要后缀名为 .bin 形式。

```
--compare_digits, -d
```

比较推理结果数值精度,若不指定则会默认比较小数点后五位。

2. 输出内容解析

结果对比最终会在终端展示,工具会对比ONNX模型运行结果,模拟器运行及上板结果的两两对比情况,若无问题应显示如下:

Shell

1 % 1 Quanti onnx and Arm result Strict check PASSED

在定点模型和runtime模型精度不一致时会输出不一致结果的信息并提示check FAILED。

1.3.1.2 使用示例

1.3.2 hb_verifier工具介绍

hb_verifier 工具是用于对指定的定点onnx模型和bin模型进行结果验证的工具。该工具会使用 指定图片(若未指定图片,则工具会用默认图片进行推理,featuremap模型会使用随机生成的 tensor数据),进行定点模型推理,bin模型板端和x86端模拟器上的推理,并对其三方的结果进行 两两比较,给出是否通过的结论。同时该工具支持比对移除了Dequantize节点的.bin模型与定点 onnx模型的比对。

1.3.2.1 工具简介

1. 参数说明

Shell	l				
1	hb_verifier -m	\${ quanti_model } , \${ bi	n_model} \		
2	-b	\$ {board_ip} \			
3	-S	True / False 🔪			
4	-i	<pre>\${input_img} \</pre>			
5	-c	\${ digits} \			
6	-r	True / False			

--model/-m

定点模型名称和bin模型名称,多模型之间用","进行区分。

--board-ip/-b

上板测试使用的arm board ip地址。

--run-sim/-s

设置是否使用X86环境的libdnn做bin模型推理,默认为False。

• 当该参数设置为 True 时,工具将会使用x86环境的libdnn做bin模型推理。

• 当该参数设置为 False 时,工具不会使用x86环境的libdnn做bin模型推理。

--input-img/-i

指定推理测试时使用的图片。

若不指定则会使用随机生成的tensor数据。

若指定图片为二进制形式的图片文件,其文件形式需要为后缀名为.bin形式。

多输入模型添加图片的方式有以下两种传参方式,多张图片之间用","分割:

- input_name1:image1,input_name2:image2, …
- image1,image2...

```
--compare_digits/-c
```

设置比较推理结果的数值精确度(即比较数值小数点后的位数),若不进行指定则工具会默认比较至 小数点后五位。

--dump-all-nodes-results/-r

设置是否保存模型中各个算子的输出结果,并对算子输出名称相同的结果进行对比,默认为False。

- 当该参数设置为 True 时,工具将会获取模型中所有节点的输出,并根据节点输出的名字做匹配, 从而进行对比。出于性能考虑,暂不支持在X86环境下使用 dump 功能。
- 当该参数设置为 False 时,工具将会只获取模型最终输出的结果,并进行对比。
- 2. 输出内容解析

结果对比最终会在终端展示,工具会对比多个模型在不同场景下的运行结果,若无问题应显示如下:

Shell

1 Quanti.onnx and Arm result Strict check PASSED

在定点模型和runtime模型精度不一致时会输出不一致结果的信息并提示check FAILED。

1.3.2.2 使用示例

1. quanti.onnx 模型推理、.bin 模型板端推理、.bin 模型x86端推理结果对比:

Shell

- 1 hb_verifier -m quanti.onnx,model.bin -b *.*.* -s True
- 2. quanti.onnx 模型推理与 .bin 模型板端推理结果对比:

Shell

1 hb_verifier -m quanti.onnx,model.bin -b *.*.*.*

3. quanti.onnx 模型推理与 .bin 模型在X86端推理结果对比:

Shell				
1 hb	_verifier -m quar	ti.onnx,model.bin -s Tru e	9 ,7 ¹²	

4. .bin 模型在板端和端推理结果对比:

Shell

- 1 hb_verifier -m model.bin -b *.*.* -s True
- 5. 保存 quanti.onnx 模型推理、.bin 模型板端推理过程中各个算子的输出,并对算子输出名 称相同的结果进行对比:

Shell

1 hb_verifier -m quanti.onnx,model.bin -b *.*.* -r True

1.3.3 hrt_model_exec infer工具介绍

1.3.3.1 参数说明

hrt_model_exec infer命令用于模型推理,使用用户自定义输入数据,推理一帧。用户通过 input_file 指定输入数据路径,若为图片,工具将根据模型信息resize图片,整理模型输入信 息。

该命令也会输出单线程运行单帧的模型运行时间。

書:古 47	A			В		
1	可选参数	说明				
2	core_id	指定模型推理的核id,0	: 任意核,1: core0,2: c	core1;默认为 0。		
3	roi_infer	使能resizer模型推理; 老	吉模型输入包含resizer源,i	设置为 true,默认为 fa	lse。	
4	roi	roi_infer 为 true 时生效	,设置推理resizer模型时所	需的 roi 区域以分号间	隔。	
5	frame_count	设置 infer 运行帧数,单	帧重复推理,可与 enable_	_dump 并用,验证输出	l一致性,默认为 1。	康晋洁 4755 地平32
6	dump_interme diate	dump模型每一层输入数 bin 和 txt,其中BPU节,	(据和输出数据,默认值 0, 点输出为aligned数据; 3:	不dump数据。 1:输 输出类型为 bin 和 txt,	出文件类型为 bin; 2: 其中BPU节点输出为v	输出类型为 /alid数据。
7	enable_dump	dump模型输出数据,默	认为 false。			
8	dump_precisio n	控制txt格式输出float型	数据的小数点位数,默认为	9。 1977年1月		康温温 4175
9	hybrid_dequant ize_process	控制txt格式输出float类	型数据,若输出为定点数据	将其进行反量化处理,	目前只支持四维模型。	
10	dump_format	dump模型输出文件的类	型,可选参数为 bin 或 txt,	,默认为 bin。		
11	dump_txt_axis	dump模型txt格式输出的	b换行规则;若输出维度为r	,则参数范围为[0, n],	默认为 4。	
12	enable_cls_pos t_process	使能分类后处理,目前只	R支持ptq分类模型,默认 fa	alse。		

1.3.3.2 使用示例

1. 普通模型

Apache

- 1 hrt_model_exec infer --model_file=xxx.bin --input_file=xxx.jpg --enable_dump 1
 --dump_format txt
- 2. resizer模型(J5 OE1.1.29后可支持,XJ3 OE2.4.2后可支持)

Bash	1 原语语 4755 地平台			
普清 4755 地平 1	./hrt_model_exec	infermodel_file=x	xxx.bininput_file= xxx.jp	s 4155 ¹⁰⁰⁷⁻¹⁸ g
	roi="2,4,123,125"	'roi_infer=true	enable_dump 1dump_format	txt

3. 移除了反量化节点的模型,仍然输出反量化后的浮点结果(J5 OE1.1.37后可支持,XJ3 OE2.5.2 后可支持)

Ngin	X			
1 AT55 187	hrt_model_exec infe	ermodel_file=xxx.bi	ninput_file=xxx.jpg	原晋洁 4755 地平线
	hybrid_dequantize_p	process 1enable_dum	p 1dump_format txt	

1.4 精度调优建议

经过大量实际生产经验验证,如果能筛选出最优的量化参数组合,地平线的转换工具在大部分情况 下,都可以将精度损失保持在1%以内。依据精度损失情况,可参照以下建议进行解决:

1.4.1 精度损失明显(4%以上)

若模型精度损失大于4%,通常是因为yaml配置不当,校验数据集不均衡等导致的,建议依次从 pipeline、模型转换配置、一致性检查三个方面进行排查。

1. pipeline及模型转换配置检查

pipeline是指您完成数据准备、模型转换、模型推理、后处理、精度评测Metric的全过程。前文精度 验证推荐的前两个步骤可以帮助您排查前后处理及yaml文件配置是否有误,精度评测Metric则需要 您确保与原始浮点模型完全一致。

2. 数据处理一致性检查

该部分检查主要针对参考OE开发包示例准备校准数据以及评测代码的用户,主要有以下常见错误:

- **未正确指定read_mode**: 02_preprocess.sh中可通过 --read_mode 参数指定读图方式, 支持opencv及skimage。此外preprocess.py中亦是通过 imread_mode 参数设定读图方 式,也需要做出修改。使用 skimage 的图片读取,得到的是RGB通道顺序,取值范围为 0~1,数值类型为float; 而使用 opencv,得到的是BGR通道顺序,取值范围为0~255,数 据类型为uint8。
- 校准数据集的存储格式设置不正确:目前我们采用的是numpy.tofile来保存校准数据,这种方式不会保存shape和类型信息,因此如果input_type_train为非featuremap格式,需要通过yaml中参数 cal_data_type 来设置二进制文件的数据存储类型。若为J5-OE1.1.16以及XJ3-OE1.13.3以前的版本,则会通过校准数据存放路径是否包含"f32"来判断数据dtype,若包含f32关键字,则按float32解析数据;反之则按uint8解析数据。

transformer实现方式不一致:地平线提供了一系列常见预处理函数,存放

在 /horizon_model_convert_sample/01_common/python/data/transformer .py 文件中,部分预处理操作的实现方式可能会有所区别,例如ResizeTransformer,我们采 用的是opencv默认插值方式(linear),若为其他插值方式可直接修改 transformer.py 源码,确保与训练时预处理代码保持一致。

3. 精度debug工具

精度debug工具计划于23年5月释放,包含节点敏感度分析、模型误差累计曲线绘制、节点统计量等分析功能。

1.4.2 精度损失较小(1.5%-3%)

为降低模型精度调优的难度,我们建议您优先尝试将 calibration_type 配置为 default 。 default为自动搜索功能,以第一张校准数据输出节点余弦相似度为依据,从max、max-Percentile 0.99995和KL等校准方法中选取最优的方案,最终选取的校准方法可关注转换日志类似 "*Select kl method*." 的提示。若自动搜索的精度结果仍然与预期有差距,可尝试以下建议进行调优:

1. 调整校准方式

- a. 手动指定 calibration_type,选择mix; (mix校准会先使用kl校准方式量化模型,取余 弦相似度低于0.999的节点作为敏感节点,再分别使用max、max0.99995校准这些节点,取余 弦相似度最佳的校准方式得到混合校准模型)
- b. 将 calibration_type 配置为 max ,并配置 max_percentile 为不同的分位数(取 值范围是0-1之间),我们推荐您优先尝试 0.99999、 0.99995、 0.9999、 0.9999、 0.9995、 0.9999、 0.9995、 0.9999, 通过这五个配置观察模型精度的变化趋势,最终找到一个最佳的分位 数;
- c. 在前面尝试的基础上选择余弦相似度最高的方案,尝试启用 per_channel。
- 2. 调准校准数据集
 - a. 可以尝试适当增加或减少数据数量(通常来说检测场景相较于分类场景需要的校准数据要少; 此外可以观察模型输出的漏检情况,适当增加对应场景的校准数据);
 - b. 不要使用纯黑纯白等异常数据,尽量减少使用无目标的背景图作为校准数据;尽可能全面的覆 盖典型任务场景,使得校准数据集的分布与训练集近似。
- 3. 将部分尾部算子回退到 CPU 高精度计算
 - a. 一般我们仅会尝试将模型尾部输出层的 1~2个算子回退至 CPU,太多的算子会较大程度影响 模型最终性能,判断依据可通过观察模型的余弦相似度;(若将某些中间节点run_on_cpu, 发现精度没有提升,这是正常现象,因为反复重量化可能还会带来更大的精度损失,因此通常 只建议将尾部节点回退cpu)
 - b. 指定算子运行在 CPU 上请通过yaml文件中的 run_on_cpu 参数,通过指定节点名称将对应 算子运行在cpu上(参考示例:run_on_cpu: conv_0)。
 - c. 若run_on_cpu之后模型编译报错,请直接联系地平线技术支持人员