7.2. 模型性能Benchmark

7.2.1. 说明

  • 测试条件:

    • 测试开发板:J5-DVB board。

    • 测试核心数:latency单核,fps双核。

    • 性能数据获取频率设置为:每5分钟获取一次性能参数,取平均值。

  • 缩写说明:

    • C = 计算量,单位为GOPs(十亿次运算/秒)。此数据通过 hb_perf 工具获得。

    • FPS = 每秒帧率。此数据在开发板单线程运行ai_benchmark_j5示例包/script路径下各模型子文件夹的 fps.sh 脚本获取,包含后处理。

    • ITC = 推理耗时,单位为ms(毫秒)。此数据在开发板单线程运行ai_benchmark_j5示例包/script路径下各模型子文件夹的 latency.sh 脚本获取,不含后处理。

    • TCPP = 后处理耗时,单位为ms(毫秒)。此数据在开发板单线程运行ai_benchmark_j5示例包/script路径下各模型子文件夹的 latency.sh 脚本获取。

    • RV = 单帧读取数据量,单位为mb(兆比特)。此数据通过 hb_perf 工具获得。

    • WV = 单帧写入数据量,单位为mb(兆比特)。此数据通过 hb_perf 工具获得。

7.2.2. 模型重要性能数据

MODEL NAME

INPUT SIZE

C(GOPs)

FPS

ITC(ms)

TCPP(ms)

ACCURACY

Dataset

MobileNetv1

1x224x224x3

1.14

3747.30

0.948

0.072

Top1:

0.7061(FLOAT)

0.7029(INT8)

ImageNet

MobileNetv2

1x224x224x3

0.63

4158.47

0.798

0.094

Top1:

0.7264(FLOAT)

0.7160(INT8)

ImageNet

GoogleNet

1x224x224x3

3.00

2309.68

1.237

0.073

Top1:

0.7001(FLOAT)

0.6986(INT8)

ImageNet

Resnet18

1x224x224x3

3.65

1555.99

1.699

0.072

Top1:

0.6836(FLOAT)

0.6825(INT8)

ImageNet

EfficientNet-Lite0

1x224x224x3

0.77

2815.39

1.148

0.072

Top1:

0.7491(FLOAT)

0.7475(INT8)

ImageNet

EfficientNet-Lite1

1x240x240x3

1.20

2388.45

1.847

0.073

Top1:

0.7647(FLOAT)

0.7624(INT8)

ImageNet

EfficientNet-Lite2

1x260x260x3

1.72

2134.98

1.372

0.072

Top1:

0.7738(FLOAT)

0.7715(INT8)

ImageNet

EfficientNet-Lite3

1x280x280x3

2.77

1612.71

1.672

0.072

Top1:

0.7922(FLOAT)

0.7905(INT8)

ImageNet

EfficientNet-Lite4

1x300x300x3

5.11

1068.14

2.305

0.072

Top1:

0.8070(FLOAT)

0.8052(INT8)

ImageNet

Vargconvnet

1x224x224x3

9.06

1585.29

1.629

0.073

Top1:

0.7790(FLOAT)

0.7787(INT8)

ImageNet

Efficientnasnet_m

1x300x300x3

4.53

1143.83

2.122

0.073

Top1:

0.7965(FLOAT)

0.7923(INT8)

ImageNet

Efficientnasnet_s

1x280x280x3

1.44

2723.18

1.115

0.073

Top1:

0.7573(FLOAT)

0.7505(INT8)

ImageNet

YOLOv2_Darknet19

1x608x608x3

62.94

285.93

7.212

1.688

[IoU=0.50:0.95]=

0.2760(FLOAT)

0.2710(INT8)

COCO

YOLOv3_Darknet53

1x416x416x3

65.90

208.43

9.807

9.958

[IoU=0.50:0.95]=

0.3330(FLOAT)

0.3300(INT8)

COCO

YOLOv5x

1x672x672x3

243.92

77.45

25.436

30.975

[IoU=0.50:0.95]=

0.4800(FLOAT)

0.4640(INT8)

COCO

Ssd_mobilenetv1

1x300x300x3

2.30

2530.37

1.115

1.121

mAP:

0.7342(FLOAT)

0.7278(INT8)

VOC

Centernet_resnet101

1x512x512x3

90.53

263.38

6.830

21.376

[IoU=0.50:0.95]=

0.3420(FLOAT)

0.3320(INT8)

COCO

Yolov3_vargdarknet

1x416x416x3

42.82

306.26

6.793

9.911

[IoU=0.50:0.95]=

0.3350(FLOAT)

0.3270(INT8)

COCO

Deeplabv3plus_efficientnetb0

1x1024x2048x3

30.78

204.16

10.031

0.797

mIoU:

0.7630(FLOAT)

0.7567(INT8)

Cityscapes

Fastscnn_efficientnetb0

1x1024x2048x3

12.50

289.49

7.254

0.777

mIoU:

0.6997(FLOAT)

0.6928(INT8)

Cityscapes

Deeplabv3plus_efficientnetm1

1x1024x2048x3

77.05

118.11

16.947

0.824

mIoU:

0.7794(FLOAT)

0.7741(INT8)

Cityscapes

Deeplabv3plus_efficientnetm2

1x1024x2048x3

124.16

89.94

22.421

0.812

mIoU:

0.7882(FLOAT)

0.7856(INT8)

Cityscapes

Resnet50

1x224x224x3

7.72

684.64

3.17

0.094

Top1:

0.7737(FLOAT)

0.7636(INT8)

ImageNet

VarNetV2

1x224x224x3

0.72

3511.84

0.886

0.094

Top1:

0.7394(FLOAT)

0.7277(INT8)

ImageNet

Swint

1x224x224x3

8.98

91.69

22.183

0.097

Top1:

0.7933(FLOAT)

0.7741(INT8)

ImageNet

fcos_efficientnetb0

1x512x512x3

5.02

1729.16

1.494

0.251

[IoU=0.50:0.95]=

0.3626(FLOAT)

0.3505(INT8)

COCO

fcos_efficientnetb2

1x768x768x3

22.11

389.50

5.467

6.779

[IoU=0.50:0.95]=

0.4470(FLOAT)

0.4460(INT8)

COCO

fcos_efficientnetb3

1x896x896x3

41.51

243.81

8.525

9.169

[IoU=0.50:0.95]=

0.4710(FLOAT)

0.4720(INT8)

COCO

pointpillars_kitti_car

150000x4

66.82

111.28

27.044

2.625

APDet=

0.7745(FLOAT)

0.7673(INT8)

Kitti3d

RetinaNet

1x1024x1024x3

301.27

68.85

27.784

6.090

[IoU=0.50:0.95]=

0.3153(FLOAT)

0.3146(INT8)

COCO

Yolov3_MobileNetV1

1x416x416x3

20.58

492.76

4.384

1.678

mAP:

0.7664(FLOAT)

0.7588(INT8)

VOC

Mobilenet_Unet

1x1024x2048x3

7.36

1057.38

2.118

0.595

mIoU:

0.6802(FLOAT)

0.6748(INT8)

Cityscapes

pwcnet_opticalflow

1x384x512x6

81.71

155.74

13.152

0.310

EndPointError:

1.4114(FLOAT)

1.4101(INT8)

flyingchairs

7.2.3. 模型全部性能数据

7.2.3.1. MobileNetv1

  • INPUT SIZE:1x224x224x3

  • C(GOPs):1.14

  • FPS:3747.30

  • ITC(ms):0.948

  • TCPP(ms):0.072

  • RV(mb):4.08

  • WV(mb):0.13

  • Dataset:ImageNet

  • ACCURACY:Top1: 0.7061(FLOAT)/0.7029(INT8)

  • LINKS:https://github.com/shicai/MobileNet-Caffe

7.2.3.2. MobileNetv2

  • INPUT SIZE:1x224x224x3

  • C(GOPs):0.63

  • FPS:4158.47

  • ITC(ms):0.798

  • TCPP(ms):0.094

  • RV(mb):3.56

  • WV(mb):0.02

  • Dataset:ImageNet

  • ACCURACY:Top1: 0.7264(FLOAT)/0.7160(INT8)

7.2.3.3. GoogleNet

7.2.3.4. Resnet18

7.2.3.5. EfficientNet-Lite0

7.2.3.6. EfficientNet-Lite1

7.2.3.7. EfficientNet-Lite2

7.2.3.8. EfficientNet-Lite3

7.2.3.9. EfficientNet-Lite4

7.2.3.10. Vargconvnet

7.2.3.11. Efficientnasnet_m

7.2.3.12. Efficientnasnet_s

7.2.3.13. YOLOv2_Darknet19

  • INPUT SIZE:1x608x608x3

  • C(GOPs):62.94

  • FPS:285.93

  • ITC(ms):7.212

  • TCPP(ms):1.688

  • RV(mb):46.18

  • WV(mb):1.47

  • Dataset:COCO

  • ACCURACY:[IoU=0.50:0.95]= 0.2760(FLOAT)/0.2710(INT8)

  • LINKS:https://pjreddie.com/darknet/yolo

7.2.3.14. YOLOv3_Darknet53

  • INPUT SIZE:1x416x416x3

  • C(GOPs):65.90

  • FPS:208.43

  • ITC(ms):9.807

  • TCPP(ms):9.958

  • RV(mb):57.73

  • WV(mb):4.94

  • Dataset:COCO

  • ACCURACY:[IoU=0.50:0.95]= 0.3330(FLOAT)/0.3300(INT8)

  • LINKS:https://github.com/ChenYingpeng/caffe-yolov3

7.2.3.15. YOLOv5x

7.2.3.16. Ssd_mobilenetv1

  • INPUT SIZE:1x300x300x3

  • C(GOPs):2.30

  • FPS:2530.37

  • ITC(ms):1.115

  • TCPP(ms):1.121

  • RV(mb):5.85

  • WV(mb):0.20

  • Dataset:VOC

  • ACCURACY:mAP: 0.7342(FLOAT)/0.7278(INT8)

  • LINKS:https://github.com/chuanqi305/MobileNet-SSD

7.2.3.17. Centernet_resnet101

7.2.3.18. Yolov3_vargdarknet

7.2.3.19. Deeplabv3plus_efficientnetb0

7.2.3.20. Fastscnn_efficientnetb0

7.2.3.21. Deeplabv3plus_efficientnetm1

7.2.3.22. Deeplabv3plus_efficientnetm2

7.2.3.23. Resnet50

  • INPUT SIZE:1x224x224x3

  • C(GOPs):7.72

  • FPS:684.64

  • ITC(ms):3.17

  • TCPP(ms):0.094

  • RV(mb):24.88

  • WV(mb):1.13

  • Dataset:ImageNet

  • ACCURACY:Top1: 0.7737(FLOAT)/0.7636(INT8)

7.2.3.24. VarNetV2

  • INPUT SIZE:1x224x224x3

  • C(GOPs):0.72

  • FPS:3511.84

  • ITC(ms):0.886

  • TCPP(ms):0.094

  • RV(mb):3.70

  • WV(mb):0.04

  • Dataset:ImageNet

  • ACCURACY:Top1: 0.7394(FLOAT)/0.7277(INT8)

7.2.3.25. Swint

  • INPUT SIZE:1x224x224x3

  • C(GOPs):8.98

  • FPS:91.69

  • ITC(ms):22.183

  • TCPP(ms):0.097

  • RV(mb):42.57

  • WV(mb):8.74

  • Dataset:ImageNet

  • ACCURACY:Top1: 0.7933(FLOAT)/0.7741(INT8)

7.2.3.26. fcos_efficientnetb0

  • INPUT SIZE:1x512x512x3

  • C(GOPs):5.02

  • FPS:1729.16

  • ITC(ms):1.494

  • TCPP(ms):0.251

  • RV(mb):5.86

  • WV(mb):0.76

  • Dataset:COCO

  • ACCURACY:[IoU=0.50:0.95]= 0.3626(FLOAT)/0.3505(INT8)

7.2.3.27. fcos_efficientnetb2

7.2.3.28. fcos_efficientnetb3

7.2.3.29. pointpillars_kitti_car

  • INPUT SIZE:

  • C(GOPs):66.82

  • FPS:111.28

  • ITC(ms):27.044

  • TCPP(ms):2.625

  • RV(mb):53.18

  • WV(mb):32.82

  • Dataset:Kitti3d

  • ACCURACY:APDet=0.7745(FLOAT)/0.7673(INT8)

7.2.3.30. RetinaNet

  • INPUT SIZE:1x1024x1024x3

  • C(GOPs):301.27

  • FPS:68.85

  • ITC(ms):27.784

  • TCPP(ms):6.090

  • RV(mb):109.39

  • WV(mb):70.40

  • Dataset:COCO

  • ACCURACY:[IoU=0.50:0.95]=0.3153(FLOAT)0.3146(INT8)

7.2.3.31. Yolov3_MobileNetV1

  • INPUT SIZE:1x416x416x3

  • C(GOPs):20.58

  • FPS:492.76

  • ITC(ms):4.384

  • TCPP(ms):1.678

  • RV(mb):26.68

  • WV(mb):2.34

  • Dataset:VOC

  • ACCURACY:mAP:0.7664(FLOAT)0.7588(INT8)

7.2.3.32. Mobilenet_Unet

  • INPUT SIZE:1x416x416x3

  • C(GOPs):7.36

  • FPS:1057.38

  • ITC(ms):2.118

  • TCPP(ms):0.595

  • RV(mb):10.59

  • WV(mb):6.55

  • Dataset:Cityscapes

  • ACCURACY:mIoU:0.6802(FLOAT)0.6748(INT8)

7.2.3.33. pwcnet_opticalflow

  • INPUT SIZE:1x384x512x6

  • C(GOPs):81.71

  • FPS:155.74

  • ITC(ms):13.152

  • TCPP(ms):0.310

  • RV(mb):35.47

  • WV(mb):16.36

  • Dataset:flyingchairs

  • ACCURACY:EndPointError:1.4114(FLOAT)/1.4101(INT8)